skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Edwards, April"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kacprzyk, Janusz; Pal, Nikhil R; Perez, Rafael B; Corchado, Emilio S; Hagras, Hani; Kóczy, László T; Kreinovich, Vladik; Lin, Chin-Teng; Lu, Jie; Melin, Patricia (Ed.)
    The COVID-19 pandemic was lived in real-time on social media. In the current project, we use machine learning to explore the relationship between COVID-19 cases and social media activity on Twitter. We were particularly interested in determining if Twitter activity can be used to predict COVID-19 surges. We also were interested in exploring features of social media, such as replies, to determine their promise for understanding the views of individual users. With the prevalence of mis/disinformation on social media, it is critical to develop a deeper and richer understanding of the relationship between social media and real-world events in order to detect and prevent future influence operations. In the current work, we explore the relationship between COVID-19 cases and social media activity (on Twitter) in three major United States cities with different geographical and political landscapes. We find that Twitter activity resulted in statistically significant correlations using the Granger causality test, with a lag of one week in all three cities. Similarly, the use of replies, which appear more likely to be generated by individual users, not bots or public relations operations, was also strongly correlated with the number of COVID-19 cases using the Granger causality test. Furthermore, we were able to build promising predictive models for the number of future COVID-19 cases using correlation data to select features for input to our models. In contrast, significant correlations were not identified when comparing the number of COVID-19 cases with mainstream media sources or with a sample of all US COVID-related tweets. We conclude that, even for an international event such as COVID-19, social media tracks closely with local conditions. We also suggest that replies can be a valuable feature within a machine learning task that is attempting to gauge the reactions of individual users. 
    more » « less
  2. Abstract In Fall 2020, universities saw extensive transmission of SARS-CoV-2 among their populations, threatening health of the university and surrounding communities, and viability of in-person instruction. Here we report a case study at the University of Illinois at Urbana-Champaign, where a multimodal “SHIELD: Target, Test, and Tell” program, with other non-pharmaceutical interventions, was employed to keep classrooms and laboratories open. The program included epidemiological modeling and surveillance, fast/frequent testing using a novel low-cost and scalable saliva-based RT-qPCR assay for SARS-CoV-2 that bypasses RNA extraction, called covidSHIELD, and digital tools for communication and compliance. In Fall 2020, we performed >1,000,000 covidSHIELD tests, positivity rates remained low, we had zero COVID-19-related hospitalizations or deaths amongst our university community, and mortality in the surrounding Champaign County was reduced more than 4-fold relative to expected. This case study shows that fast/frequent testing and other interventions mitigated transmission of SARS-CoV-2 at a large public university. 
    more » « less